Physics Major, Physics and Computers OptionPage 1

Physics Core

A physics major must satisfactorily complete the following courses: Physics 51, 52, 54, 64, 111, 116, 133, 134, 151, 195 (taken four times), and Mathematics 82. In addition, a physics major must satisfactorily complete the courses in the standard program or in one of the Physics options. A final oral and written report of completed research, Clinic, or independent project work is required for all physics majors. The Physics 195 Colloquium requirement is waived for any semester during which a student is away on a study abroad program.

  • MATH082 HM

    Credits: 3

    Instructor: Staff

    Offered: Fall

    Description: Modeling physical systems, first-order ordinary differential equations, existence, uniqueness, and long-term behavior of solutions; bifurcations; approximate solutions; second-order ordinary differential equations and their properties, applications; first-order systems of ordinary differential equations. Applications to linear systems of ordinary differential equations, matrix exponential; nonlinear systems of differential equations; equilibrium points and their stability. Additional topics.

    Prerequisites: (MATH019 HM and MATH073 HM) or equivalent 

  • PHYS051 HM

    Credits: 3

    Instructors: Breznay, Gerbode, Tamayo

    Offered: Fall

    Description: An introduction to electricity and magnetism leading to Maxwell's elec­tromagnetic equations in differential and integral form. Selected topics in classical and quantum optics.

    Prerequisites: PHYS023 HM and PHYS024 HM 

    Corequisites: MATH082 HM or MATH056 HM 

  • PHYS052 HM

    Credits: 3

    Instructor: Staff

    Offered: Spring

    Description: The development and formulation of quantum mechanics, and the application of quantum mechanics to topics in atomic, solid state, nuclear, and particle physics.

    Prerequisites: PHYS051 HM and MATH082 HM 

  • PHYS054 HM

    Credit: 1

    Instructors: Eckert, Staff

    Offered: Spring

    Description: Classical experiments of modern physics, including thermal radiation and Rutherford scattering. Nuclear physics experiments, including alpha, beta and gamma absorption, and gamma spectra by pulse height analysis. Analysis of the buildup and decay of radioactive nuclei.

    Corequisites: PHYS050 HM and PHYS052 HM 

  • PHYS064 HM

    Credits: 3

    Instructor: Staff

    Offered: Spring

    Description: This course combines mathematical and computational methods that are useful for studying physical systems. Topics include: Linear algebra, Hilbert spaces, the eigenvalue problem and numerical algorithms for solving problems in linear algebra, including various modes of decomposition; Fourier series and transforms, convolution, correlation and numerical methods using fast Fourier transforms; computer simulation methods based on integrating coupled differential equations and also using pseudorandom numbers, including Monte Carlo methods; partial differential equations, separation of variables, Laplace and Poisson equations in various dimensions, the wave equation, and numerical approaches to solution.

    Prerequisites: (CSCI005 HM or CSCI042 HM) and MATH082 HM 

  • PHYS111 HM

    Credits: 3

    Instructor: Tamayo

    Offered: Fall

    Description: The application of mathematical methods to the study of particles and of systems of particles; Newton, Lagrange, and Hamilton equations of motion; conservation theorems; central force motion, collisions, damped oscillators, rigid body dynamics, systems with constraints, variational methods.

    Prerequisites: PHYS023 HMPHYS024 HM, and (MATH082 HM or PHYS064 HM

  • PHYS116 HM

    Credits: 3

    Instructor: Gerbode

    Offered: Spring

    Description: The elements of nonrelativistic quantum mechanics. Topics include the general formalism, one-dimensional and three-dimensional problems, angular momentum states, perturbation theory and identical particles. Applications to atomic and nuclear systems.

    Prerequisites: PHYS052 HM 

  • PHYS133 HM

    Credit: 1

    Instructors: Gallicchio, Staff

    Offered: Fall

    Description: An intermediate laboratory in electronics involving the construction and analysis of rectifiers, filters, transistor and operational amplifier circuits.

    Prerequisites: PHYS054 HM 

  • PHYS134 HM

    Credits: 2

    Instructor: Staff

    Offered: Spring

    Description: A laboratory-lecture course on the techniques and theory of classical and modern optics. Topics of study include diffraction, interferometry, Fourier transform spectroscopy, grating spectroscopy, lasers, quantum mechanics and quantum optics, coherence of waves and least-squares fitting of data.

    Prerequisites: PHYS051 HM and PHYS054 HM 

  • PHYS151 HM

    Credits: 3

    Instructor: Sahakian

    Offered: Fall

    Description: The theory of static and dynamic electromagnetic fields. Topics include multipole fields, Laplace's equation, the propagation of electromagnetic waves, radiation phenomena and the interaction of the electromagnetic field with matter.

    Prerequisites: PHYS051 HM and (PHYS111 HM or PHYS116 HM) and (MATH180 HM or PHYS064 HM)

  • PHYS195 HM (taken four times)

    Credit: 0.5

    Instructor: Staff

    Offered: Fall and spring

    Description: Oral presentations and discussions of selected topics, including recent developments. Participants include physics majors, faculty members, and visiting speakers. Required for all junior and senior physics majors. No more than 2.0 credits can be earned for departmental seminars/col­loquia. 

Physics and Computers Option

Students planning a career or graduate studies in computer applications to problems in physics and engineering would particularly benefit from Physics 117 and Mathematics 165. Students planning graduate studies in computer science should take Computer Science 105 and additional computer science courses as time permits.

  • PHYS117 HM

    Credits: 3

    Instructors: Esin, Saeta

    Description: Classical and quantum statistical mechanics, including their connection with thermodynamics. Kinetic theory of gases. Applications of these concepts to various physical systems.

    Prerequisites: PHYS052 HM 

OR

  • Two physics halfcourses

AND

  • PHYS170 HM

    Credits: 2

    Instructor: Sahakian

    Offered: Spring

    Description: Advanced techniques in computational physics including high performance computing using parallelization (both CPU- and GPU-based ), machine learning and neural networks, and metaprogramming.

    Prerequisites: PHYS052 HMPHYS064 HM, and PHYS111 HM 

AND

  • CSCI042 HM

    Credits: 3

    Instructor: Stone and Wiedermann

    Offered: Fall

    Description: Accelerated breadth-first introduction to computer science as a discipline for students (usually first-year) who have a strong programming background. Computational models of functional and object-oriented programming. Data structures and algorithm analysis. Computer logic and architecture. Computability. Extensive practice constructing applications from principles, using a variety of languages. Successful completion of this course satisfies the CSCI005 HM Core requirement and CSCI060 HM coursework.

    Prerequisites: Permission of instructor

OR

  • CSCI060 HM

    Credits: 3

    Instructors: Boerkoel, Breeden, Dodds, Padmanabhan, Stone, Talvitie, Trushkowsky, Wiedermann, Wu

    Offered: Fall and spring

    Description: Introduction to principles of computer science: Information structures, functional programming, object-oriented programming, grammars, logic, correctness, algorithms, complexity analysis, and theoretical limitations. Those who have completed CSCI042 HM cannot take CSCI060 HM.

    Prerequisites: CSCI005 HM or CSCI005GR HM 

AND

Two electives chosen from:

  • ENGR155 HM

    Credits: 4

    Instructors: Brake, Harris

    Offered: Fall

    Description: Introduction to digital design using programmable logic and microprocessors. Combinational and sequential logic. Finite state machines. Hardware description languages. Field programmable gate arrays. Microcontrollers and embedded system design. Students gain experience with complex digital system design, embedded programming, and hardware/software trade-offs through significant laboratory and project work.

    Prerequisites: ENGR085 HM or (ENGR085A HM and CSCI060 HM)

  • MATH165 HM

    Credits: 3

    Instructors: Bernoff, Haddock, de Pillis, Yong

    Offered: Fall

    Description: An introduction to the analysis and computer implementation of basic numerical techniques. Solution of linear equations, eigenvalue prob­lems, local and global methods for nonlinear equations, interpolation, approximate integra­tion (quadrature), and numerical solutions to ordinary differential equations.

    Prerequisites: MATH073 HM and MATH082 HM 

  • Any computer science course numbered 70 or higher

AND

4 to 6 credits of:

  • PHYS199 HM (taken twice)

    Credits: 1-3

    Instructor: Staff

    Offered: Fall and spring

    Description: Original experimental or theoretical investigations in physics undertaken in consultation with a faculty member. Projects may be initiated by the student or by a faculty member. Present faculty research areas include astrophysics, biophysics, optics, solid-state and low-temperature physics, general relativity, quantum mechanics, particle physics, geophysics, and soft matter physics. Students are responsible for an oral presentation on progress and plans in the first half of the thesis research.

    Prerequisites: Permission of department. Senior standing.  

OR

  • A full year of an approved Clinic